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Abstract

Several parallel algorithms for Fock matrix construction are described. The
algorithms calculate only the unique integrals, distribute the Fock and density ma-
trices over the processors of a massively parallel computer, use blocking techniques
to construct the distributed data structures, and use clustering techniques on each
processor to maximize data reuse. Algorithms based on both square and row blocked
distributions of the Fock and density matrices are described and evaluated. Variants
of the algorithms are discussed that use either triple-sort or canonical ordering of
integrals, and dynamic or static task clustering schemes. The algorithms are shown
to adapt to screening, with communication volume scaling down with computation
costs. Modeling techniques are used to characterize algorithm performance. Given
the characteristics of existing massively parallel computers, all the algorithms are
shown to be highly efficient on problems of moderate size. The algorithms using
the row blocked data distribution are the most efficient.

1 Introduction

The high computational power and large aggregate memory of massively parallel process-
ing (MPP) supercomputers gives these machines the potential to solve Grand Challenge-
class problems in computational chemistry. In this and a companion paper [1], we report
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our initial efforts to develop effective ab initio electronic structure codes for MPP comput-
ers that are capable of solving problems with O(10%7?) atoms and O(10°~*) basis func-
tions. Problems of this scale almost automatically imply that all matrices be distributed
over the processors. The present paper reviews a number of strategies for coding rela-
tively simple electronic structure methods when using distributed data structures. The
companion paper describes a specific implementation and presents initial performance
characteristics of electronic structure applications to problems of up to 100 atoms and
1000 basis functions.

The architecture of MPP computers is very different from that of vector supercom-
puters. A typical MPP computer consists of a collection of processors, each with its
own memory and connected via a high performance network. When designing algorithms
for these computers, important issues include avoiding replicated computation (compu-
tational efficiency), distributing data structures so as to avoid wasting memory (data
distribution), distributing computation to processors so as to avoid idle time when one
processor is busy and others are not (load balance), and minimizing time spent sending
and receiving messages (communication efficiency). A metric that integrates these differ-
ent criteria is scalability: the extent to which an algorithm is able to solve larger problems
as the number of processors is increased.

The complex architecture of MPP computers makes intuitive notions of performance
unreliable. Hence, a sound methodology when developing parallel algorithms is to begin
by examining algorithmic alternatives at a theoretical level. Only once scalability has
been established should effort be devoted to implementations on parallel computers. In
this paper, we apply this methodology to the direct closed-shell self-consistent field (SCF)
method [2, 3]. See [4] (and references therein) for a recent review of current parallel SCF
development. SCF is an important method in its own right and, in addition, is typical
of other more sophisticated methods in its use of large data structures and irregular data
access patterns. We develop a family of algorithms for the Fock matrix construction
component of the SCF method, analyze the scalability of these algorithms, and make
recommendations as to which algorithm to incorporate in a parallel implementation.

The SCF method obtains the energy and wavefunction of a molecular system by
iterating over two basic steps until self-consistency is obtained. First, a two-dimensional
Fock matrix F'is constructed from the current estimate of the wavefunction. Second, F
is diagonalized to obtain an improved estimate of the wavefunction. The second step is
computationally trivial on sequential computers but can become a rate limiting step on
large numbers of processors [6]. In future work, we will explore an alternative scheme
proposed by Shepard [7] that avoids the need for diagonalization.

We focus on the Fock matrix construction problem in this paper. The Fock matrix F
in the atomic orbital (AO) basis is defined as

By =i+ 303 D (5140 = Seikijn) (1

k=11=1

where N is the number of basis functions, & is the one-electron Hamiltonian, D is the
one-particle density matrix, and (¢j|kl) represents a two-electron integral. All quantities
are assumed hereafter to be real. The calculation of the two-electron integrals is the most
expensive component of this computation. It might appear from Eqn. 1 that N* integrals



must be evaluated. However, D and F' are symmetric and for any (¢, j, k,[) the following
integrals are equivalent:

(2j|kl) = (gilkl) = (ig]lk) = (jellk) = (kllig) = (kl]ji) = (Ikleg) = (Ik[j2).  (2)
Once (ij|kl) is computed, the related elements of F' (F};, Fig, Fi, Fjr, Fji, and Fg) can
be updated with the product of this integral and the appropriate element of D. Hence,
the total number of integrals to be computed is only

Now = (CEV) S )

In order to exploit this symmetry, each integral calculation requires up to six D-elements
and contributes to at most six F'-elements.

The issue of screening must also be addressed. For large molecules, most integrals
are so small that their contribution to F' is negligible. For large molecules, screening can
reduce the number of contributing integrals from O(N*) to close to O(N?).

Early parallel SCF programs either replicated the D and F' matrices in each processor
of a parallel computer or had one processor maintain the data and control which processor
computes an integral batch. In all cases a resulting [ matrix would reside on a single
processor for analysis [8-17]. This approach simplified implementation and achieved high
performance. However, the replicated data restricted scalability: the maximum problem
size that could be solved was limited by the amount of memory on a single processor. For
example, Feyereisen and Kendall’s parallel DISCO code [15] is limited to approximately
400 basis functions (without symmetry) on the 512-processor Intel Touchstone Delta
computer, which has 16 MB of memory per processor. Nevertheless, these studies provided
much useful information on the distribution of computational tasks, load balancing and
task scheduling, etc.

A scalable parallel Fock matrix construction algorithm must distribute the D and
F matrices over available processors, so that the maximum problem size is limited only
by the aggregate memory available on the MPP computer. In Colvin et al.’s systolic
algorithm [18], Fock and density submatrices are circulated among processors. However,
this approach requires the computation of 3N*/8 integrals and suffers from an overly
synchronous computational model. Furlani and King [19] describe an algorithm that
avoids these deficiencies. Their algorithm uses several of the techniques discussed in this
paper, including a two-dimensional blocked distribution of Fock and density matrices, the
use of static and dynamic scheduling to balance the computational load, the reuse of local
data, and agglomeration of integral computations into larger tasks. However, they do not
analyze their algorithm’s parallel scalability.

The algorithms presented in this paper distribute the principal data structures, avoid
redundant integral computation, provide a framework for addressing the load balancing
problem, and can be adapted to highly screened or unscreened calculations. In addition,
analysis shows that communication costs are significantly less than computation costs on
most reasonable computer systems. Hence, the algorithms are expected to be efficient
and scalable. The results of this analysis are confirmed in the companion paper [1].

The rest of the paper is organized as follows. In Section 2, we describe the basic
features of the algorithm in the absence of screening. In Section 3, we describe variations



that can make the basic algorithm more versatile and efficient. In Section 4, we discuss
the ramifications of screening. In Section 5, we present a performance analysis of selected
algorithm variants. In Section 6, we summarize.

2 Blocked Fock Matrix Construction Algorithms

Our Fock matrix construction algorithm is computationally efficient: in the absence of
screening it performs only the essential O(N*/8) integral evaluations. Hence, in evaluating
its performance we shall focus on its communication requirements and load balance. On
many parallel computers, the cost of a communication can be modeled with reasonable
accuracy as a function of a startup cost, ¢y, and a per-word cost, t;. This measure neglects
both network and node contention. If we characterize the communication requirements
of an algorithm in terms of the total volume of data moved between processors, V', and
the number of messages sent, M, then the total communications time T, municate 18

Tcommunicate — MtO + th (4)

To illustrate, consider a simple parallel algorithm where there is a random distribution
among processors of both integral evaluations and F' and D matrix elements. Each integral
evaluation requires six D elements and computes contributions to six [’ elements. For
large P, where P is the number of processors, an integral and its data elements will almost
always be located on different processors, so the total communication requirements will

be

3
M=V = §N * (5)
On most parallel computers, the cost of sending a message is a substantial fraction of
the time required for computing an integral. As this algorithm generates twelve messages
per integral, it is unlikely to be efficient. Our goal in designing efficient parallel algorithms
is to reduce both the number of messages sent and the total volume of data communicated.

2.1 A Blocked Algorithm

A commonly-used technique for reducing communication requirements in parallel algo-
rithms is to block computations into larger tasks. This technique can reduce communica-
tion requirements if computations in a task read and write the same data, then both the
number of messages and the total volume of data communicated can be reduced.

We can incorporate blocking into the Fock matrix construction algorithm by redefining
the (¢,7,k,1) in Eqn. 1 to index symmetry-distinct atomic center integrals, where each
integral now represents a batch of basis function integrals and can be designated a task.
We could also interpret these indices as referring to shells, molecular fragments, etc.

We will show below that the data accessed by a task shows considerable locality,
and that this locality can be exploited in a number of ways to reduce communication
requirements. For now, we assume simply that the D and F matrices are distributed
using a two-dimensional blockwise distribution of the sort illustrated in Fig. 1. When the



of tasks becomes
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Figure 1: The density matrix for H,0, assuming a basis set that allocates 4 basis functions
to each H and 10 to O. Hence, N =4+ 4 + 10 = 18, and /. = N/n(atoms)=6. The
solid lines delineate submatrices Dij; each submatrix is located on a single processor and
hence can be communicated in a single message.

indices in Eqn. 1 are interpreted as referring to atomic centers, each Dzj in that equation
represents a submatrix, which in this distribution is located on a single processor and
can be communicated in a single message. Each submatrix will contain approximately
1. x I, elements, where [, is the number of basis functions divided by the number of atoms.
However, as the number of basis functions varies with the type of atom, submatrices need
not be square.

We can now determine the total communications requirements for this blocked algo-
rithm. The total number of messages per task is still 12 as in Eqn. 5 but the total number

~
~o

(6)



As each message transfers a submatrix of /. x I. elements. The total volume transferred
is:

JN?
%locked ~ 2(] )2 . (7)

We see that blocking reduces message counts by a factor of (1.)* and volume by (1.)2.
When blocking by atoms, I. is typically 10 or greater, so the reduction in communication
requirements achieved with this technique is substantial.

We now consider more sophisticated blocking strategies. First, we must consider the
order in which the unique integrals for the construction of [’ are evaluated. We shall
discuss parallel algorithms based on both a canonical ordering (specified in Fig. 2) or a
“triple-sort” ordering (Fig. 3). In the triple-sort ordering, the compute (2, ,k,l) operation
computes up to three batches of integrals if the index permutations lead to symmetry-
distinct integrals. In the canonical ordering, this operation computes exactly one batch
of integrals. In a sequential computer environment, the two orderings differ only slightly
in their performance. We shall show that in a parallel environment, their communication
requirements and screening characteristics can be quite different.

For simplicity, the indices in Figs 2 and 3 refer to basis functions, and a fixed stride of
1. is used. However, it is straightforward to modify the figures to index shells, atoms, etc.,
directly, with unit stride. The screening tests in each figure will be discussed in Section
4. In this and the succeeding section, we assume that all index values survive screening.

Consider the impact of choosing the innerloop(:,;,k) operation of these figures as a
task. If m is set to ¢ for canonical and j for triple-sort, the number of innerloop(z,s,k)
tasks is:

SoY Ys
1 = triple — sort (8)
i=1,1. 5=1,I. k=1,I. 6(10)3
N3
R~ 3017 canonical 9)

In both orderings, the increased granularity has decreased the number of tasks by O(N/1.).
Canonical ordering has twice as many tasks as triple-sort.

FEach compute(7,j,k,l) operation reads and writes data at locations (ij), (¢k), (i),
(jk), (j1), and (kl). Hence, each innerloop(i,j,k) task accesses the following elements
of D and F'. (Due to blocking, each of these “elements” is a submatrix of size I. x I..)

Loy {lig])
2. (k) {[4k]]}
3. (7 k) { [max(j, k), min(j, k) ] }
4. (l)y {[el] ] 1<1<1top}
5. (k1) {[#l] | 1<I<1ltop}
6 (1) {[ki]]1<(<1top)

In this table, 1top is k for triple-sort order and the 1hi of Fig. 2 for canonical. This
list exploits the symmetry of F' and D in both orderings. The data for each task comes



fock build
Do : =1, N, I.
DOy =1, 2, I.
IF (¢,j pair survive screening) THEN
DO k=1, 7, [.
CALL innerloop(z,j,k)
ENDDO
ENDIF
ENDDO
ENDDO

innerloop(z,y,k)
IF (k.EQ.z) [he =
IF (k.NE.:) [he = &k
DO [ =1, lhi, I.
IF (k,l pair survive screening) THEN
CALL compute(z,7,k,l)
ENDIF
ENDDO

compute(z,j,k,l)

DO FOR STRIDE OF ¢, j, k, [
EVALUATE [ = (ij]k1)
Fij= Fij+ Dyilingg
Fr= Fu+ Dijling
Fp= Fip = 5Dl

Fy= Fy- %Djk]intg

Fi= Fj= §Diling

Fir= Fj= §Diling
ENDDO

Figure 2: Basic logic for Fock matrix construction: canonical order




fock build
Do : =1, N, I.
DOy =1, 2, I.
IF (¢,j pair survive screening) THEN
DO k=1, j, L
CALL innerloop(z,j,k)
ENDDO
ENDIF ENDDO
ENDDO

innerloop(z,y,k)
Do/l =1, &k, I

CALL compute(z,7,k,l)
ENDDO

compute(z,j,k,l)
DO FOR STRIDE OF ¢, j, k, [
IF(k,l pair survive screening) EVALUATE [; = (ij|kl)
IF([¢,k and 7,/ pairs survive screening] .AND.
[distinct]) EVALUATE [, = (¢k|jl)
IF([¢,] and j,k pairs survive screening] .AND.
[distinct]) EVALUATE I3 = (¢l|jk)
DO n = 1,3 ( Distinct In only )
finge = I,
Fy;y= Py + Dyling
Fr= Fu+ Dijling
Tk it
P S
JL= J 2 ik lintg
Fip= Fj= 3Diling
ENDDO
ENDDO

Figure 3: Basic logic for Fock matrix construction: triple-sort order
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Figure 4: Data requirements for an (zjk) task, in the absence of screening. The numbers
refer to the data requirements listed in the text.

from the ¢th, jth, and kth rows of D and F. Furthermore, the first 5 elements all come
from the lower triangle of D and F'. The sixth element also comes from the lower triangle
unless canonical order is used and ¢ > k > j (a situation that occurs approximately half
the time in canonical order). These data requirements are illustrated in Fig. 4 where ¢, j,
and k should be thought of as indexing blocks of I. rows.

We see that the data accessed by the integrals in an innerloop(z,s,k) task do indeed
show considerable locality. We can exploit this locality by distributing the D matrix as
follows. We create N/I. data sets, Dy, ..., Dyyz.. Each data set comprises an entire row
of submatrix blocks (in the canonical algorithm) or partial row to the diagonal (in the
triple-sort algorithm). These data sets are then distributed over the available processors.
The F' matrix is distributed in the same manner.

With this data distribution strategy, the communication requirements of an innerloop
task can be satisfied with just six messages: three before the task is executed (one from
each of the processors holding D;, D;, and Dy) and three afterwards (to the same proces-
sors, for [, F;, and F}). Notice that for efficiency, only those elements of D;, etc., that
are required by a particular task should be communicated. (As illustrated in Fig. 4, each
task requires at most (1. x I.) 3k+1 elements of D.) The communication requirements
are then as follows.

N3
Mrow _blocked _triple_sort ~ (] )3 ( 1 0)
1 Nt
‘/row_blocked_triple_sort ~ 1 (] )2 ( 11 )



N3

Mrow_blocked_canonical ~ 2 (] )3 (12)
3 N?

‘/row_ ocked_canonica - 13

blocked 1 INTAE (13)

In summary, the blocking of integrals into innerloop(:,j,k) tasks reduces M by
O(N/I.) and V by a constant factor relative to the blocked algorithm. For the row-
blocked algorithm, triple-sort order has better performance than canonical: its M and V
are less by factors of 2 and 3, respectively. In addition, triple-sort stores only the lower
triangle of the D and F' matrices: half as much data as canonical sort.

2.2 Symmetrization

Another issue influencing the relative performance of the canonical and triple sort order-
ings is symmetrization. Asillustrated in Fig. 4, the canonical ordering produces an F' that
must be symmetrized. The actual arithmetic operations involved in the symmetrization,
namely summing the symmetrically related elements of F'; will normally be insignificant.
However, the operation has the same communication requirements as a parallel matrix
transpose [21, 22]. The usual algorithm requires that each processor exchange data with
every other processor, for a total of P? communications on a computer with P processors.
Assuming O(N) processors, the total communication costs are O(N?) data in O(N?)
messages. In the absence of screening, these costs are at least O(N) less than those as-
sociated with the construction of F'. However, they may become significant if screening
reduces communication costs during F' construction to O(N?).

2.3 Load Balance

Tasks can vary significantly in their computational cost, for three reasons. First, the
computational cost of a single integral can vary greatly. (For simple hydrocarbons, the
time to calculate (ij|kl) integrals can vary by orders of magnitude depending on the
number of basis functions indexed by ¢, j, k, and [.) Second, as discussed in Section 4
below, screening can alter the number of integrals actually computed. Third, for the
row-blocked algorithm, the number of integrals in a task depends on k.

A consequence of this variation in task cost is that an allocation strategy that places an
equal number of tasks on each processor may suffer from load imbalances. One solution to
this problem is to use a centralized scheduler to allocate tasks to processors in a demand-
driven manner [15, 19]. Scheduler-based techniques can achieve excellent load balance, but
increase communication requirements and are not truly scalable. Alternatively, a random
allocation strategy can be used. This relies on the law of large numbers to balance the
computational load. If P < N, each processor will have on average O(N?) tasks without
screening and, as will be shown later, O(NV) tasks with screening. This suggests that
a random allocation approach will be load balanced. This should also be true of the
blocked algorithm where the random allocation would be at the head of the [ loop in
the innerloop of Figs 2 and 3. Hybrid schemes that use both a scheduler and random
mapping are also possible [19].
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2.4 Blocked Algorithm Summary

Blocking is equivalent to the use of a non-unit stride /. in the nested loops executed when
constructing the Fock matrix. We have described and analyzed the performance, in the
absence of screening, of both simple blocked and row blocked algorithms, based on both
triple-sort and canonical orderings of integrals. All algorithms evaluate the minimum
number of integrals and support a full distribution of the D and F' matrices. Blocking
is shown to reduce communication requirements by a factor of between (1.)? and (I.)*,
depending on the algorithm used. Row blocking is more efficient than simple blocking.
The triple-sort algorithm is superior to the canonical algorithm: it has lower communica-
tions costs, uses one half as much memory, and does not require the M =V = O(N?) F
matrix symmetrization.

3 Clustering

The analysis in the previous section showed that the blocking of integrals into tasks
improves parallel performance by reducing communication requirements. Hence, we might
wonder whether it is beneficial to group tasks into even larger collections. In this section,
we describe two techniques for organizing tasks into larger collections that we call clusters,
and show that both techniques can reduce communication costs in certain circumstances.
The first technique supports a dynamic mapping strategy while the second defines a static
mapping. These techniques are described in the context of the row-blocked algorithm and
distribution scheme described in Section 2

3.1 Dynamic Clustering

In the first clustering algorithm that we consider, each processor executes the logic spec-
ified in Fig. 5. The assigned_tome function determines whether a particular (,j, k)
task is intended for that processor. As discussed in the preceding section, this could be
implemented as a call to a scheduler or as some “random” function.

The functions get and put represent the communication operations required to fetch
Dy, and store F}., respectively. The function conditional put performs a communication
only if the index of the row to which it is applied has changed since the last iteration.
The conditional get performs a communication if the requested elements of D are not
already locally stored. Thus a change in the row index since the last iteration will certainly
generate a communication. However, a change in the requested column indeces for a fixed
row may or may not generate a communication. The conditional gets and _puts allow
elements of data sets D;, D;, F;, and I} to be reused or cached, thereby reducing total
communication requirements.

We now analyze the communication requirements of this clustered algorithm. We
consider the triple-sort ordering; the canonical ordering is similar. We consider the com-
munication requirements of the Dy/Fy, D;/F;, and D;/F; pairs in turn.

(Dy/Fy): The contributions to both M and V are as in the row-blocked algorithm:
that is, 1/3 the values given in Eqns 10 and 11.
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Do : =1, N, I.
DOy =1, 2, I.
IF (¢,j pair survive screening) THEN
DO k=1, m, [.
IF (assigned tome(:jk)) THEN
CALL conditional.get([D);)
CALL conditional put (F})
CALL conditional get(D;)
CALL conditional put(F})
CALL get Dy
CALL innerloop(z,j,k)
CALL put (F})
ENDIF
ENDDO
ENDIF ENDDO
ENDDO

Figure 5: Clustered algorithm [m = j (triple-sort) or ¢ (canonical)]

(D;/F;): The number of messages generated for D; is as in the row-blocked algorithm:
i.e., one sixth of Miow blocked. In contrast, the number of messages for F} is bounded from
above by min(P,j/1.) for each (¢,7) pair. This is because the F; data transfer occurs
after all tasks in the pair are complete; hence, each of P processors generates at most one
message. If there are fewer tasks than processors (i.e., if P > j/I.), then at most j/I.
messages are generated. The number of messages can be less than this upper bound if
tasks are not maximally dispersed over processors. (In the unlikely event that all of these
tasks were assigned to one processor, then there would be only one message for Fj.)

D; and F; make identical contributions to V. From Fig. 4, we see that the D; elements
read by tasks in a series with fixed (¢, 7) but increasing k are precisely those elements read
when processing the highest k value. Assuming that the highest k& values are distributed
evenly among processors, the total number of D; elements read by all processors will be
the size of a single element times the sum of the P (or j/1.,if P > j/I.) highest k values.
With blocking, a single element has size (1.)?, and we sum the min(P,j/I.) highest values
of k/I.. This is an upper bound: fewer elements will be read if the highest k values are
not evenly distributed over processors. A similar analysis applies to the F); elements.

(D;/F;): Tasks with a fixed ¢ can assume the same value of k multiple times. With
triple-sort ordering, there are ¢/I. values of k that begin a stride. Each of these values
will, because of the loop over j, occur (i — k)/I. times, making the total number of (j, k)-
strided pairs approximately (¢/1.)?/2. For D;, for each allowable value of &, the number
of messages must be bounded from above by min(P,(: — k)/1.). For F; the number of
messages is, by analogy with F;, bounded from above by min(P,(i/1.)?/2). The message
volume for D; is the same as that for ;. By analogy with D;, the V' contribution of D; is
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bounded from above by (I.)? elements times the min(P,(¢/1.)?/2) highest values of k/I.
(including the multiple times a k/I. value occurs).

From these considerations, we obtain the following expressions for the clustered algo-
rithm for triple-sort ordering:

1
Mclustered — _Mrow_blocked + MF] + MFZ + MDi (14)

2
1
‘/Clustered - g‘/row_blocked + ‘/] + ‘/2 (15)

where

N 7
MF]‘ = Z min(P,j/]c)
i=1,1. 7=1,1,
N
MFi = Z min(P, (Z/]c)z/Q)
i=1,1.
N 7
MDi = Z min(P, (Z - k)/]c)
=1, k=1,1.
N i J
Vi = 2% S (L)k/L)
1=1,1c j=1,I. k=max(1,j—I.P),I.
N 7
Vi =23 > (¢ — &)/ L) (L) (/1)

Il
—

7

e k=max(1,i—I.(2P)1/2),I.

The lower limits on the 5 and & summation in the expressions for V; and V, correspond
to the min(P,j/1.) or min(P,(i/1.)?/2) highest values of k/I. discussed above.

These expressions demonstrate the value of clustering, particularly for smaller P.
Communication costs range from approximately 1/3 those of the row-blocked algorithm
(for small P) to approximately the same (for large P).

3.2 Static Clustering

The clustering scheme presented above exploits reuse within clusters of O((N/I.)*/P)
tasks. We now present an alternative technique that constructs much larger clusters
containing O((N/I.)?) tasks. This provides additional opportunities for reuse. In an
attempt to ensure load balance, these clusters are constructed so that in the absence of
screening, each contains the same number of integrals.

As noted previously, one reason why task costs vary is the length of the [ loop. In the
absence of screening, this length is determined entirely by the ¢, 5, and k indices. Hence,
it is possible to cluster tasks to generate supertasks containing a constant number of [
values (integrals). Supertasks are then mapped to processors either randomly or using a
scheduler. If supertasks have the property that two of the three task indices remained the
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Repeat for x =p and a =N —p+ 1:

1=
DO j =2, i, 2
DOk =1, 2
CALL innerloop(z,j,k)
ENDDO
ENDDO
k =z
DO : =z, N

DO j =1, i, 2
CALL innerloop(z,j,k)
ENDDO
ENDDO

Figure 6: Algorithm for Constructing Supertask Number p

same while the third ranges, on average, over a large number of values, then the number of
messages per task for unit strides approaches two. This corresponds to the small P limit
for the clustered algorithm and is the minimum number possible without data replication.

We define one possible supertasking strategy. For convenience this strategy will be
described in terms of a unit stride for canonical ordering. However, it can be adapted for
a non-unit stride and triple-sort ordering.

Consider N/2 supertasks, each containing approximately N?/4 integrals. The N/2
supertasks are numbered 1..N/2 and indexed by p. The algorithm for supertask p is given
in Fig. 6 for canonical ordering and for a common unit stride. It is easy to show that this
clustering algorithm, designated static_cluster, does indeed yield supertasks containing
the same number of integrals. From Fig. 6, when = = p, we have

%

DI SYRRED SR DI IRNIN < L N i

j=2 by 2 k=1 i=p j=1 by 2 1=p
2 N-p
o plptl) p ,
- Il + 2221(z+p)
2
p’lp+1)  p((N=p)(N—-p+1)
_ p N —
T t3 5 (N —p)
_ pN(N +1)
- 4
Ty

As supertask p comprises integrals for © = p and * = N — p+1, the total number of
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integrals is approximately
pN? (N —pN* N°
T 1 T4
which is a constant for fixed N. Note that the number of tasks per supertask is not a
constant; this is approximately

3N? +2p(p — N)
4 b
which, as p is in the range (0, N/2), ranges over (5/2N?*,3N?) for large N.

Each supertask has four double-loop structures. For each of the four double loops, one

of the indices of all the tasks to be included is fixed. A second index varies slowly and the
last index varies over, on average, a large range of consecutive values. It is easy to show
that, for large N, communication requirements are related as follows. This relationship
applies for all values of P up to N/2, the total number of supertasks.

Mstatic_cluster ‘/static_cluster 1
= = ( 1 6)
M, row _blocked ‘/row _blocked 3

3.3 Clustering Summary

The clustering of task collections to enhance reuse of D and F' matrix values is a general
technique that can enhance the performance of a parallel Fock matrix construction algo-
rithm by reducing communication costs. Both the static and dynamic clustering schemes
presented in this section have been shown to scale down communications requirements
by as much as 2/3. In the dynamic scheme, the reduction in communication costs drops
off as P increases; in the static scheme, the reduction of 2/3 is maintained even for large
P. However, we shall see in the next section that static clustering is not effective in the
presence of screening.

Notice that while we have focused here on the row-blocked algorithm, the blocked
algorithm can also be adapted to clustering by the use of conditional get and _put
statements as in Fig. 5. This strategy is employed in the code described in the companion
paper, which uses a clustered version of the blocked algorithm with an atom-indexed

blocking of data.

4 Screening

Each integral computed when constructing the Fock matrix represents the coulombic
interaction of two pairs of overlapping basis functions. If either a pair of basis functions
does not overlap significantly or if the interaction of the two pairs is negligible then the
corresponding integral will not contribute significantly to the final ' matrix and need
not be computed. Screening may be accomplished by the use of a tolerance limit on the
integrals, specified in Figs 2 and 3. In large molecules, this screening criterion can reduce
the cost of constructing F' from a nominal O(N?) integrals to, in the limit, O(N?) [3, 5].

The effect of screening on communication requirements cannot be analytically de-
termined without some approximate representation of which index values will pass the
screening tests. Hence, we make two simplifying assumptions:
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1. On average, no more than s values of j from 1 to 2 and no more than s values of [ from
1 to k survive screening to produce a non-negligible integral (¢j|kl). Both the triple-
sort and canonical loop orderings require, as is assumed in this screening model, that
J never be greater than ¢ and [ never be greater than k. For small molecules, s ~ N
and essentially every integral is computed, while for large molecules 1 < s < N.

2. The s values of j that survive screening are generally located from j = 7 — s to
2. This assumption requires that basis functions be indexed in approximately the
order of their centers when moving from one end of a molecule to the other.

For molecules containing many different types of atoms, the use of one screening parameter
s is certainly a coarse simplification. Nevertheless, our experiments suggest that for
many chemically bonded systems, the assumptions are reasonably accurate, and that s
is typically of O(100) basis functions for molecules composed of first row atoms. The
assumed location of the indices that survive screening is a coarse approximation but one
that leads to convenient expressions of M and V' that qualitatively represent the effect of
screening.

As a simple application of this model, consider the number of integrals, N, that must
be computed:

N 7 7 k 82N2
Nintg/screened = Z Z Z Z I~ 9 (17)

=1 j=max(1,i—s) k=1 [=max(1,k—s)

As is the case with all other expressions in this section, the approximate result is true
only in the limit of s <« N. The blocked algorithm sees a similar reduction:

6s2N?

Mblocked/screened ~ W (18)
6s2N?

%locked/screened ~ (] )2 (19)

The effect of screening on the row-blocked algorithm of Section 2 needs some elabora-
tion. Each task requires six messages, resulting in

N 7 m 3 N2
Mrow_blocked/screened: 6 Z Z Z 1~ (jc)?) (20)

i=1,I. j=max(l,—s),l. k=1,I.

where the value of m depends on triple-sort or canonical ordering but the final results
do not. For V, the data requirements with screening are illustrated in Fig. 7; see Fig. 4
for the unscreened case. Each task must transfer 3(min(k,s + 1)) + 1 D-matrix values
in three messages. This requires that screening be performed on the j and [ indices be-
fore data is transferred. In the triple-sort ordering, the triple permutation within each
compute(z,j,k,[) operation necessitates screening tests on each permutation of the in-
dices. The F-matrix rows are transferred at the end of the task, after screening has
been performed. Hence, total communication volume is as follows; again, the results are
independent of the choice of integral orderings.
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Figure 7: Data requirements for an (ijk) task, in the presence of screening with s = 2.

N m 2
N
‘/row_blocked/screened = Z Z (3min(k7 5+ 1) + 1) ~ 382 (]_) (21)

1=1,I. j=max(1,i—s),I. k=1,1,

In summary, we see that screening scales communication volumes in large molecules by
O(s*/N?) and message counts by O(s/N). As computation costs are, in the limit, scaled
by O(s*/N?), screening causes message counts to become a significantly greater contrib-
utor to total execution time. Screening also acts to make communications requirements
of triple-sort and canonical orderings the same.

4.1 Dynamic Clustering

In Section 3, we showed that some components of Mstered (Dj, Dk, Fi) and Viustered
(Dy, Fy) were identical to corresponding components of Myow_blocked and Viow_blocked, While
others needed to be corrected to allow for clustering. In addition, we determined that D
message volumes were identical to F' message volumes. These relationships also hold in
the presence of screening. Hence, we need only determine the contribution of F; and F; to
M and V and the contributions of D; to M, all within the context of triple-sort ordering.

Consider first the contributions to M of I}, I}, and D;. These contributions correspond
to the latter three terms in Eqn. 14. Fach term includes a summation over j: for F}, the
summation over j is explicit, while for F}; and D;, the j summation is implicit in the
non- P component of the min operation. Given our screening model, the lower limit of
these summations must change from 1 to max(1,i — s), giving the expression:

1

Mclustered/screened = §Mrow_blocked/screened + MFj/screened + MFi/screened + MDi/screened (22)
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where

N 7
MFj/screened = Z min(P7 ]/IC)
1=1,1. j=max(1,i—s),I.
N
MFi/screened = Z min(P7 SZ/(IC)z)
i=1,1.
N 7
MDi/screened Z min(P7min[i - k? S]/IC)
=110 k=1.1.

Equation 15, the expression for message volume, can be generalized for screening into:

1
‘/Clustered/screened = g ‘/row _blocked/screened + ‘/j/screened + ‘/i/screened (23)

where

J

min [ Z (]c)k,sj]
k=max(

1,j—1.P),Ic

M=

‘/j/screened = 2

7

1,Ic j=max(1,i—s),I.

min [ > min(e — k, s)k, > 33]
c s),1e

k=max(1,i—klo),I. j=max(1,i—

‘/i/screened = 2

I
:MZ

K3

In V}/screened, the lower limit of the j summation has been modified to include the
screening constraint. The min statement reflects two limits. If the number of processors is
small, then each task performed on a processor for a given (7, j) pair will require segments
of s columns that will overlap those required by other tasks on the same processor. In
this “overlapping” limit, the message volume is unaffected by screening. This is the first
argument in the min operation; it is identical to that in the unscreened case (Eqn. 15).
On the other hand, if the number of processors is large, then the few tasks performed on
each processor will have s column segments that do not overlap. In this limit, message
volume is s/. elements for each of the j/I. values of k. This is the second argument in
the min operation.

A similar analysis is applied in Vj/screenea. The first argument in the min operation
is the “overlapping” limit. This is identical to the no screening case (Eqn. 15), except
that the lower limit in the & summation (klo) is changed. The klo in that limit has the
unscreened value of IC(ZP)% if P < (0.5)(s/1.)* or I.(P/s) — (0.5)(s/1.) otherwise. The
second argument is the large P limit, where we have s/, elements for each (j, k) pair for
a given ¢.

In the above expressions, the relationship between the clustered and the row-blocked
algorithm as a function of P does not change substantially with screening. However, as
with the row-blocked algorithm, screening makes the communications requirements of the
clustered algorithm independent of triple-sort or canonical ordering.

There is some structure to the columns selected by screening in D and F. Since
screening tests are similar for all basis functions in a shell of an atom and (to a lesser
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extent) for all the basis functions of an atom, screening will tend to either process or ignore
entire shell or atom submatricesin D and F' (see Fig. 1). To process the conditional get,
the data transmitted is presumed column selected within the row-based data set. A more
compact selection would be shell or atom selection.

4.2 Static Clustering

When evaluating the impact of screening on our static clustering algorithm, our first
concern is to determine whether the number of integrals per supertask stays constant. In
large molecules, it is generally the case that s < p < N/2. Hence, the number of integrals
performed by that part of the supertask where # = p is as follows, given our simplifying
assumptions concerning screening.

2

P P N i
Z Zmin(l—l—s,k) + Z Z min(l+s,p) ~ %—I—Sp(]\f—p—l—l)
j=min(2,p—s) by 2 k=1 1=p j=min(1,i—2) by 2
(21)
Adding the contribution for + = N — p + 1, we find that the number of integrals in
a supertask is no longer independent of p. Hence, load imbalance becomes a problem,
particularly when the number of processors is similar to the number of supertasks (N/2).
We have devised alternative static clustering algorithms that account for screening
when constructing supertasks, but we have not been able to devise a single algorithm that
applies in a variety of screening regimes. Hence, we conclude that our static clustering
algorithm is probably not a robust method for allocating tasks to processors. In addition,
we know that both the use of a single screening parameter s and the assumption that
all integrals have the same cost are unrealistic approximations. We expect that tasks
constructed using any algorithm based on these approximations will in practice differ
considerably in cost. An accurate static clustering algorithm would appear to require a
detailed analysis of the chemical nature of the basis functions, shells, or atoms involved in
a particular system. In general, we doubt that the effort required to perform this analysis
will be worthwhile.

5 Performance Analysis

The performance of a parallel algorithm is determined by both communication and com-
putation requirements (as characterized in preceding sections in terms of M, V, and the
number of integrals N, ) and the characteristics of a particular MPP computer. Recall
that the communication performance of a computer can be represented by parameters #
and t; (Eqn. 4) Computational performance can be related to the peak rate of floating
point operations per second. However, in practice, such rates are hardly ever obtained.
For the Fock matrix construction problem, the computation time T}, us 1s best expressed
as

Tcompute — Nintgtintg (25)
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where #in 1s the time per integral, a quantity that can be measured.

In the companion paper, timings of an actual code based on the ideas discussed here
are presented for the Intel Touchstone Delta MPP computer. The values of g, #;, and
tintg found to be appropriate for this computer are 300 microseconds (usec), lusec, and
500usec, respectively. These times depend on not only the inherent characteristics of
the Delta but also the particular implementation of the communication operations and
integral routines. However, they are representative of what can be obtained on today’s
production MPP computers.

In previous sections, M and V' have been determined for blocked, row-blocked, and
clustered algorithms and Ny, has been similarly defined for the screened and unscreened
case. The performance of these algorithms can be conveniently represented by their
efficiency, which is the ratio of the computation time to the sum of the computation time
plus the total message time or:

. Nintgtinte
Efjiciency = Nintglineg + Mto + Vi, (26)
This quantity lies between 0 and 1 and when multiplied by the number of processors P
gives the parallel speedup achieved by the code.

The efficiency of the various Fock matrix construction algorithms can now be de-
termined as a function of N, s, and P. For example, with N = 1000 and s = 100,
and assuming the communication parameters listed above, the efficiency predicted for
the blocked, row-blocked, and clustered algorithms does not vary significantly for P up
to 1000. However, it does vary strongly with /.. With I. = 1, the blocked algorithm
achieves an efficiency of only 0.12, while for the row-blocked algorithm efficiency is 0.95,
and the clucstered is as high as 0.98 for low P and 0.96 for high P. With I. = 10, all
algorithms achieve an efficiency of essentially 1.00. Note that these predicted efficiencies
do not account for load imbalance and diagonalization.

These results of this analysis suggest that, as expected, the smaller number of messages
generated by the row-blocked algorithm makes it significantly more efficient than the
blocked algorithm when [, is small. However, the stride I. is clearly a more important
determinant of performance. Uniformly increasing the stride on all three indices or, more
generally, redefining 7, 7, and k to index collections of basis functions (i.e., shells, atoms,
molecular fragments, etc.), seems to be the single most important strategy for improving
efficiency. Our performance models predict that almost perfect parallel efficiencies should
be achieved once the stride length is 10. A stride of ten is a typical value for the number
of basis functions per atom in many basis sets of choice for atoms in the first row of the
periodic table.

It is interesting to study the sensitivity of these results to machine parameters. Fig. 8
plots efficiency as a function of P when the computation/communication cost ratio is
decreased by a factor of 100. This might correspond, as indicated in the Figure caption,
to a 100-fold increase in computation speed (tin, = dusec, tog = 300usec, t; = lusec),
for example in a MPP machine of the future. Alternatively, it could represent a 100-fold
decrease in communication speed (fin,, = H00usec, to = 30,000usec, t; = 100pusec), for
example on a local area network (e.g., Ethernet). For interest, we include a replicated
code, which avoids communication during computation but which must broadcast the
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Figure 8: Predicted efficiency of four Fock matrix construction algorithms when N = 1000,
5 =100, I, = 10, and tjue = dpusec.

lower triangle of D and sum the partially constructed copies of the lower triangle of F'
located on each processor. We see that all methods continue to achieve good performance,
although the row-blocked and clustered algorithms are now noticeably better than the
blocked algorithm. We also see that the replicated code is not always the most efficient.
At high values of P, it communicates large amounts of data that are never used because
of screening. These results suggests that the algorithms described in this paper will be
efficient even on loosely-coupled parallel computers, as long as a strides of 10 or larger
are used.

Figure 8 might also correspond to a non-direct Hartree-Fock algorithm that exploits
the considerable disk space of some MPP computers. For example, the 128 node IBM
SP1 facility at Argonne National Laboratory has 1GB of dedicated disk space for each
processor with an aggregate disk space of 128 GB. For problems with screening, the
number of integrals grows as (sN)?/2. If s = 100 and N < 1750, the integrals that
survive screening could be computed in the first iteration and then saved onto local disk.
In subsequent iterations, those integrals can be read off disk in such large batches that
transfer time is bandwidth limited. With a realistic bandwidth of IMB/sec, the cost of
transfering an integral is about 8usec. These are approximately the conditions of Figure 8.

At no time in this paper have we considered strides that were of different lengths for
different do-loops. It is possible to generalize the formulas for M and V to this case.
Suppose the possible combinations of different strides are restricted to those that have
the same total local memory allocations for permanent and temporary storage of data
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structures of D and F. Our analysis shows that under the circumstances considered in
Fig. 8, it is the largest stride common to all the do-loops that determines efficiency.

6 Conclusion

We have presented several scalable and efficient parallel algorithms for the construction
of the Fock matrix in SCF problems. The algorithms are scalable in that they allow the
Fock and density matrices to be distributed over multiple processors. They are efficient
in that they perform only a single pass through the integrals and allow for two levels of
task grouping referred to as blocking and clustering which reduce both the total number
and volume of interprocessor communications. These grouping techniques have been
shown to be effective even when screening reduces computation costs from O(N?) to
O(N?) integrals. We have characterized the effectiveness of the algorithms by developing
mathematical models for communication costs as functions of problem size, number of
processors, available memory, and a screening parameter.

Evaluations of these models with parameters typical of existing MPP computers show
that all the algorithms proposed are highly efficient. The most efficient algorithms dis-
tribute the D and F matrices in blocks containing multiple rows. These algorithms require
a communications library that in one message can transmit selected columns from these
row-based data structures. The next most efficient algorithms use submatrices of D and
[ as their blocks. These algorithms can be implemented using a simple communications
library able to transmit an entire submatrix with no need for column (or row or element)
selection.

We have evaluated two alternative integral orderings: triple-sort and canonical. Our
analysis suggests that triple-sort ordering is to be preferred over canonical. It requires
one half as much storage and constructs a symmetrized Fock matrix. In the atypical case
of applications with little screening, triple-sort performs less communication. Otherwise,
communication costs are the same for both methods.

We have also examined two general classes of clustering technique: static and dynamic.
Both schemes can adapt to varying amounts of memory, with communication requirements
scaling inversely with available memory. We show that static clustering is superior from
the point of view of communication requirements. However, it tends to suffer from load
imbalances in the presence of screening. Hence, we recommend the more flexible dynamic
clustering technique.

In a companion paper [1], a fully scalable code is presented that exploits the algorithms
discussed here and, in addition, addresses other practical issues such as the distribution
of all data structures of order N? (e.g., the overlap integrals used in screening), the de-
velopment of a communications library for efficient data transfer, coding modifications to
improve load balancing, and the diagonalization of the distributed Fock matrix. Empiri-
cal studies performed with this code confirm the general conclusions of this paper as does
the work of Furlani and King [19].

Future work is being directed in three broad areas. First, the use of a electrostatic
moment expansion for the calculation of the Coulomb interactions in the Fock matrix is
a well-known way of reducing the number of individual integrals that must be calculated.
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We are examining the implications of this approach for the algorithms discussed in this
paper. Second, we are extending the current approach to compute higher order derivatives
of the energy with respect to coordinates. Third, we are investigating alternatives to the
use of conventional linear algebra methods for the diagonalization step. In particular, an
energy minimization procedure in the parameter space of the basis function amplitudes
appears promising on parallel computers.
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